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ABSTRACT

This paper presents a survey of the current state-of-the-art in multidisciplinary aeromechanical analyses
which integrate advanced Computational Structural Dynamics (CSD) and Computational Fluid Dynamics
(CFD) methods. The application areas to be surveyed include fixed wing aircraft, turbomachinary, and
rotary wing aircraft. The objective of the authors in the present paper — together with a companion paper
on requirements — is to lay out a path for a High Performance Computing (HPC) based next generation
comprehensive rotorcraft analysis. From this survey of the key technologies in other application areas it is
possible to identify the critical technology gaps that stem from unique rotorcraft requirements.

INTRODUCTION

This paper presents a survey of computational aeroe-
lasticity in the disciplines of fixed wing aircraft, turboma-
chinery, and rotary wing aircraft. The work was under-
taken by the U.S. Army Aeroflightdynamics Directorate
under the High Performance Computing Institute for Ad-
vanced Rotorcraft Modeling and Simulation (HI-ARMS)
and NASA.

The survey covers the emerging methods which in-
tegrate Reynolds-averaged Navier-Stokes (RANS) CFD,
Finite Element Method (FEM) based structural mechan-
ics, and high-fidelity coupling procedures designed to sat-
isfy the unique requirements of each discipline. In each
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discipline, the key aeromechanical phenomena which de-
termine the costs and risks associated with design, but
remain beyond current prediction capabilities, are de-
scribed. The current status of High Performance Com-
puting (HPC) based high-fidelity studies on the key phe-
nomena are reviewed, the recent advances summarized,
and the unresolved challenges highlighted.

The central theme of this paper is rotorcraft. The
objective of the authors — together with a companion pa-
per on requirements [1] — is to lay out a path for a High
Performance Computing (HPC) based truly comprehen-
sive next generation rotorcraft code; comprehensive in
solutions (performance, loads, stability, vibration, han-
dling qualities), comprehensive in applications (ground,
hover, steady flight, unsteady maneuvers), and compre-
hensive in scope (arbitrary geometries, innovative con-
figurations). The intention of the present review is to
identify the key technologies in other application areas
that can be drawn upon to this end, and to identify the
critical technology gaps that stem from unique rotary



wing requirements.

The paper is divided into five sections. The first
section presents a description of the state-of-the-art in
high-fidelity fluid structure coupling. This is followed by
three sections, one each on the status of computational
aeroelasticity in fixed wing aircraft, turbomachinery, and
rotary wing aircraft. Each section is subdivided into two
parts; the first part is on structural mechanics, the sec-
ond part is on coupled fluid-structure applications. The
CFD methods applicable to each discipline are not re-
viewed in this paper. The last section summarizes the
different CFD/CSD coupling nomenclatures used in the
three disciplines.

FLUID-STRUCTURE COUPLING

Definition of the problem

The problem of fluid-structure coupling involves
three issues: (1) temporal accuracy, (2) spatial accuracy,
and (3) interface geometry representation. The purpose
of the present discussion is to clarify their meaning, ex-
plain why they were of little importance in rotorcraft so
far, and highlight why they are important now and for
the future.

At the PDE level, the three issues are related to the
following questions. The first issue, that of temporal ac-
curacy, is related to the question whether two systems
of coupled PDEs of different types can be solved sepa-
rately, one after the other, one step at a time, exchang-
ing solutions at each time step. This is the method of
partitioned formulations that begins with an acceptance
that fluid PDEs of convection-diffusion type, and struc-
tural PDEs of elliptic type are best solved separately in
their own domains using their own efficient solvers. The
main task then is to devise a method of solution exchange
which renders the process at least as time accurate as the
worse of the two solvers. The second and the third issues,
those of spacial accuracy and interface geometry repre-
sentation, are related to errors introduced during solution
exchange across domains. Depending on these errors the
method of solution exchange must be re-constructed to
achieve an intended temporal accuracy. Note that the
second and the third issues are independent of the first,
that is, they arise whether or not a partitioned procedure
is adopted.

Partitioned vs. fully coupled formulations

The practical benefits of partitioned formulations
are obvious — modularity of framework, and domain sep-
aration for refinements. However, an appropriate method
of solution exchange must be designed to ensure time ac-
curacy. Fully coupled formulations, on the other hand,
are strictly time accurate without this additional bur-

den. However, such formulations require: (1) a com-
mon time integrator, and (2) solution of an algebraic sys-
tem, at each Newton-like step, that includes both fluid
and structural stiffness. The second requirement is not
easy to meet for the following reasons. Direct solution
is not an option, since modern CFD (without the use
of reduced order modeling) provides far too many de-
grees of freedom (DOFs), typically 10-100M for rotor-
craft. Iterative solution is the natural option in CFD.
The temporal evolution of a convection-diffusion equa-
tion is naturally analogous to the iterative convergence
of an algebraic system. Moreover, they are easy to par-
allelize. On the other hand, iterative solvers are tradi-
tionally not preferred for structures. The convergence
rates of iterative solvers depend on the condition num-
ber of the system (for symmetric positive definite ma-
trices the condition number is the ratio of the largest to
the smallest eigenvalues, or natural frequencies squared).
Typically, aerospace structures pose 4-th order elastic-
ity problems involving bending-torsion-extension of thin
beams, or bending-shear-extension of thin plates, and
shells. Condition numbers for such structures range from
108 to 10° (the number for a typical rotor beam model
is around 10°). In comparison, the maximum condition
number for a 2-nd order fluid problem can be as high as
105. Pre-conditioners that are well suited for structures
are not suitable for fluids. For example, the incomplete
Cholesky pre-conditioner cannot be applied to fluids as
the fluid system is not symmetric positive definite. Simi-
larly, pre-conditioners well suited for fluids, like the block
Jacobi (easily parallelizable), can only be used for struc-
tures with special re-ordering and sparsity fill-in for rea-
sonable, yet problem dependent, convergence. Moreover,
such procedures demonstrate poor scalability. Thus, the
challenge of a unified solution procedure in the presence
of CFD is real [2].

The difficulty is bypassed for structures that are less
ill-conditioned. Omne example is turbomachinery struc-
tures. These are modeled using solid elements, gov-
erned by 2-nd order elasticity. Gottfried and Fleeter
[3] have used full coupling for turbomachinery aeroelas-
ticity. Their analyses, TAM-ALE3D, a refined version
of the original ALE3D code developed in the Lawrence
Livermore National Laboratories, is a fully coupled finite
element analysis that has been applied to turbomachin-
ery flutter calculations. A second example is biological
structures. Here, structures are either membrane-like, or
thick, when shell-like. Bathe and Zhang [4] have applied
full coupling in biomedical fluid flows, as well as general
internal flows in mechanical components. Their analysis
is used extensively for biomedical and mechanical appli-
cations, as part of the ADINA commercial software code.
An option for partitioned formulation is also provided
(the authors denote them as direct and iterative proce-



dures). The foundations of all fully coupled approaches
can be traced back to the Arbitrary Lagrangian Eulerian
(ALE) formulation of conservations laws, first introduced
by Hirt et al. [5] in 1974 for fluid flows at all speeds. It
was applied by Donea [6] in 1983 for fluid-structure in-
teraction problems. Bendikson [7, 8] first applied this
technique in the early 1990s for flutter calculations and
demonstrated minimal errors in energy transfer between
fluids and structures. Fully coupled formulations are also
termed monolithic formulations.

In summary, for aerospace structures, partitioned
formulations provide fundamental advantages over fully
coupled ones, in addition to their obvious practical ben-
efits.

Current coupling practices in rotorcraft

Classical comprehensive analyses, which use lifting-
line or lifting-surface models, involve at the most 1-10K
DOFs. The formulation is fully coupled, and is solved
using direct methods. Thus the first issue of temporal
accuracy is satisfied. To re-iterate, the need for a par-
titioned formulation for fluids and structures is felt only
under the following two circumstances. First, when mil-
lions of fluid DOF's call for an iterative solver whereas the
structural DOF's, being ill-conditioned, call for a direct
solver, or at least a different pre-conditioner. Second,
when these conflicting requirements of fluids and struc-
tures are very easily met in separate domains. The sec-
ond issue of spatial accuracy is easily satisfied by such for-
mulations as the structural shape functions are available
to the fluid terms. The third issue of interface geometry
representation has also been simple, so far, in rotorcraft.
This is because the beam theory, or any single compo-
nent structural model, regardless of 1-D, 2-D, or 3-D,
provides a simple yet rigorous definition of the surface.
The complexity arises in multi-component structures like
the fuselage.

Dynamics researchers have carried out coupled
rotor-fuselage analysis, but at a time when CFD air-
loads were beyond state of the art. With the emergence
of this capability, there is a requirement to address the
issue of geometry representation. A detailed dynamic
model is not necessarily the best suited for fluid-structure
coupling. The surface geometry representation is more
important than the internal load paths. Thus, the re-
quirement is to have, at the least, a shell model that
re-produces the low frequency modes (up to 40 Hz), and
at best, a detailed model that includes the outer skin.
Fixed-wing researchers have already accomplished these
tasks, and there is a volume of literature that can be
drawn upon.

Rotorcraft CFD/CSD coupled analyses have used
partitioned procedures. The focus so far has been on the

rotor. For an isolated rotor, the wetted surface is rigor-
ously defined. The shape functions are available. Thus
the issues of spatial accuracy and surface representation
are easily dealt with. The issue of temporal accuracy is
enforced concurrently with Newton-Raphson type itera-
tions for determining the trim angles. For a time march-
ing solution, the procedure is conceptually simpler as the
trim angles are left undetermined, but requires the en-
forcement of temporal accuracy at every time step. The
problem is then the same as that faced by fixed-wing re-
searchers, where it has been of great importance due to
the emphasis on flutter. Small errors in coupling result in
erroneous energy exchange and affect flutter boundaries
adversely. The emphasis in rotors has been on loads.
Errors in fluid-structure coupling are less visible. The
problem is further compounded in fixed-wing because of
its 3-D structure and multiple sub-structures. Without a
detailed 3-D structure, this difficulty has not been faced
yet in rotorcraft.

Temporal accuracy

The temporal accuracy of partitioned formulations
is the main focus of high-fidelity fluid-structure coupling.
Physically, it means that the airloads and structural
loads at a given time step are consistent with one an-
other. Numerically, it means that the temporal error is
driven down to the level of the worse solver.

One effective approach is the use of sub-iterations
between every consecutive pair of time steps. The
method was first applied in aeroelastic computations by
Strganac and Mook [9], followed by Weeratunga and Pra-
mono [10], and more recently by Melville and his co-
researchers [11, 12]. The method is time intensive for
RANS. Potential innovations may involve the coupling
of structural dynamics with the fluid sub-iterations.

Early work in fixed-wing fluid structure coupling in-
volved sub-iteration free, straight-forward time integra-
tion. See for example, Edwards [13], Bennet [14], and
Guruswamy et al. [15, 16]. In the serial approach, one
solver waited for the completion of the other, before ex-
changing solutions and advancing to the next time step.
In the parallel approach, both solvers advanced simulta-
neously, followed by solution exchange before advancing
to the next step. The latter was proposed originally by
Weeratunga and Pramono [10], and refined subsequently
by Farhat and Lesoinne [17]. The original work involved
accompanying sub-iterations due to the relative instabil-
ity of the scheme. The subsequent refinement improved
stability without sub-iterations, at the cost of exchang-
ing solutions twice at each time interval. Since then, a
significant amount of research has been conducted on de-
vising sub-iteration free methods that retain, at the least,
second-order accuracy. Farhat and his co-researchers [18]



have described the formal design of such methods.

Sub-iteration free approaches are predictor-corrector
schemes, tailored to the individual time integrators. A
generalized predictor-corrector approach is illustrated
below, adopted from the last reference. The mesh defor-
mation is denoted by z, the fluid variables are denoted by
¢, and the structural deformations by w. The time step
is denoted by n. The fluid-structure interface boundary
is denoted by I'. For example ur denotes the structural
deformations at the interface, a subset of u. The symbol
«—— denotes a time integrator and shows dependencies
on the latest time steps. A single time step advancement
is given as follows.

1. Predict deflections for the next time step

+1F

up

2. Update mesh points . Mesh boundary points de-
noted by xr. Mesh internal points denoted by xq.
The boundary mesh points can be updated as

n+1p

P P
x?“ — 2 ,up

For example,
1P P _ 1P P
Pttt =2 +Ur (u?"' —up

The above equation simply represents the discretized
deflection and velocity compatibilities on the sur-
face. Without re-griding in time, the deflection com-
patibility is given by x = Uru where Ur is simply
the transformation that connects the CFD surface
grid to the structural grid. For perfectly matched
meshes Ur is equal to the identity matrix. The ve-
locity compatibility is @ = Urpu. If the structure
reaches out to the wetted surface, and the shape
functions are known, Ur = H, where H are the
shape functions. With re-griding, the mesh connec-
tivity changes with time, i.e. the transformation Ur
is now a function of time, and the discretized veloc-
ity compatibility is expressed as @ = Upt where Up
denotes a selected combination of Ur over previous
time steps, e.g. the mean of U} and U?‘l.

The internal points are updated based on the bound-

ary points

P P P
oy e—ah apT

3. Update fluid solver using updated mesh
qn—i-l - qn xn+1P
4. Calculate structural forcing

F, (q”“, Jf?“P)

or F, (q”, a:?P) ... or other forms.

n+1 _
Frt =

5. Update structural solver

u" e— o™ F'Y (including wpt! )

The predictor is on displacement (step 1). The corrector
is on forcing (step 4). Methods of the above type are
classified as loose coupling in the fixed wing community.
If the above procedure is carried out multiple times at the
same time step (i.e. sub-iterations), then the following
can be enforced

n+1P_ n+1
Uup = Urp

which implies that the mesh deformation follows
x?“ =z + Ur (u{f“ - u?)
rather than

n+1? P _ nt1? P
il =ar + Ur (“r —up

and hence enforces the velocity compatibility & = Udur
strictly. The forcing and structural response (step 4 and
5) are also consistent, as x}”lp is replaced with x?“.
The method with sub-iterations is classified as close cou-
pling, tight coupling, or strong coupling in the fixed wing
literature. The force predictor in step 4 can be chosen in
various ways. The first form is also called serial stagger-
ing. The second form is called parallel staggering, simply
because the fluid and structural updates (step 3 and 5)
can be performed independently of one another.

The methods that enforce second-order accuracy,
without sub-iterations, rely on the formal selection of:
(1) the integrators, i.e. the arrows ‘«—’; (2) the initial
predictor, i.e. step 1, and (3) the form of the force cor-
rector, i.e. step 4. Two illustrative examples are provide
in reference [18] based on a second-order fluid integra-
tor, and a second-order (Newmark type) structural in-
tegrator. Unless formally selected, the sub-iteration free
methods provide only first-order accuracy.

Lastly, we note that for non-CFD Lagrangian aero-
dynamic models, the time iteration procedure is simpler
as there are no grid motions. The need to reconcile the
Geometric Conservation Law and structural motion up-
date does not arise. The structural forcing Fj is related
directly to the deformations u. The serial and parallel
staggered schemes along with sub-iterations can be im-
plemented as follows.

1. Serial staggered with sub-iterations
Predict w"+1"
Then, perform successively
1 1P
Frtl e — Froynt s in step 1
utt — y" FLin step 2

. . P
Iterate until convergence, i.e. u"*1 ~ ynt!



2. Parallel staggered with sub-iterations
Predict w"+1"
Then, perform in a single step

P
FrHl e Fpoun s

)

n+1

U — u",

Exchange updates, i.e. update «"1" with u"*! in
the airloads integrator, and update F* with Fnt!
in the structures integrator, and iterate until con-
vergence.

The parallel staggered method is advantageous when
the fluid and the structure are run on separate processors.
The parallel method has inferior stability and requires
requires lower time steps.

Spatial accuracy

Assume that the structural model includes a rig-
orous interface geometry representation. However, the
CFD and the CSD discretizations will not, in general,
match at the interface. The deformation and struc-
tural forcing must be mapped correctly across the non-
matching interface. Generic methods which are ‘exact’
regardless of the blade shape are critical for the evalu-
ation of advanced geometry blades. Two such methods
are formulated below.

Deformation mapping deals with the correct evalua-
tion of Ur in step 2 (see previous section). Loads transfer
deals with the correct evaluation of structural forcing F
in step 4. The latter implies an exact evaluation of the
virtual work term. This is a necessary energy conserva-
tion requirement. In addition, it is desirable, though not
necessary, that the total integrated forcing be preserved
during the mapping.

Deformation mapping is straight-forward when the
shape functions are available. Loads transfer can be ac-
complished via: (1) integrated force coupling, and (2) di-
rect traction coupling. In the integrated force coupling,
the virtual work is calculated based on integrated fluid
stresses (pressure and skin friction) over a surface patch.
In surface traction coupling, the virtual work is calcu-
lated based on the pressure and shear distributions di-
rectly. The first method preserves total forces, but does
not guarantee energy conservation for a finite mesh. The
second method is strictly energy conservative, but does
not guarantee preservation of total forces. Thus, they
are complimentary to each other. However, as long as in-
terpolations and integrations are performed consistently
within each domain, both satisfy and conservation and
preservation in the limit of mesh refinement.

Both methodologies can be formulated for rotor
blades. Simple illustrations are given below.

F

‘X] AZ
P

Figure 1: A concentrated force on a rotor blade ob-
tained by integrating fluid stresses over a surface
patch of area AA

The integrated force coupling is formulated as fol-
lows. Consider a concentrated force F acting at a point
P on the deformed blade, Fig. 1. Fis integrated trac-
tion over an arbitrary patch of area AA. The virtual
work done by the force is simply

SW =F . 6fp (1)

where 7p is the position vector of the point P, and 07'p is
its virtual displacement. The position can be expressed
as

7p =1led (2)
r are the scalar components and e® = [ijk]T is a set of
unit vectors. Let u be the states of blade deformation.
The virtual displacement then becomes

67p = (Dou)” € (3)

where D is the derivative matrix of the scalar components
r with respect to the states u. Henceforth, matrices are
denoted in bold capital letters. In beam theory, the states
are typically three deflections and three rotations v =
[u1,u2,us,01,60s,05]. D is then the (3 x 6) derivative
matrix. Expressing the force in the same basis

—

F=FT¢0 (4)

gives
SW = FTDéu (5)

If g are the N generalized nodal displacements of a finite
element containing the point P, and H is the (6 x N)
elemental shape function matrix, it follows from du =
Hdq

SW = FTDHéq = QT dq (6)

The generalized nodal force is then given by
Q=HTDTF (7)

The term D7 transmits the airloads in 3-D space to the
1-D beam structure. The matrix D varies with the choice
of beam theory. Note that, from eqn. 3, the virtual dis-
placement components are

drp = Déu = DHdgq (8)



Equations 7 and 8 highlight the well-known relation
that the generalized structural forcing vector relate to
the aerodynamic forcing via the transpose of the relation
that connects the aerodynamic deflections to structural
deflections. Here, DH can be interpreted as the equiva-
lent elemental shape functions in 3-D space for the cor-
responding beam theory.

Note that the force method ensures that the total
integrated forces (and moments) remain the same when
transferred from the fluid to the structural domain. How-
ever, because the point of application of F within each
surface patch is arbitrary, the method is energy conser-
vative only in the limit of mesh refinement. Strict con-
servation can be enforced using traction coupling.

n dX

Figure 2: Fluid pressure and sllrface shear over a
rotor blade differential area dA

The direct traction coupling is formulated as follows.
Consider a differential area dA within the surface patch
AA of magnitude dA and unit normal 7, Fig. 2.

dA = iidA = n"e"dA (9)
The differential force generated by the pressure is
—pdA = —pnTe’dA

The differential force generated by the fluid stress tensor
along the direction of dA is

op - dA = op - tdA = (opn)TedA

In the force coupling case, the following integration was
performed in the fluid domain.

—pd/f—i— oF - dA
AA

= {/ pnT dA +/ (opn)T dA} e = FTel
AA AA
(10)

ﬁ:

The integrated force was then transferred to the struc-
tural domain. H and D, required for this calculation,
were available in the structural domain. Now consider

the virtual work calculation using fluid traction.

oW =
AA

:/ [—pnT + (opn)T] ¢ - (Dou)” PdA (1)
AA

(fpdeJr OF * d/_l') - 0Tp

= / [—pnT + (Upn)T] DHéqdA = QT éq
AA

The generalized nodal force then becomes

Q= [-H"D"np+H"D"opn] dA (12)

AA

Note that the integration involves variables from both
domains. If performed in the fluid domain, exact values
of D and H must be received from the structural do-
main at the fluid Gauss points. Similarly if performed in
the structural domain, exact values of p and og must be
received from the fluid domain at the structural Gauss
points. The value of n is different in both (except in the
ideal case when the meshes and spatial orders match ex-
actly). Unlike integrated force coupling, direct traction
coupling ensures the exact calculation of virtual work.

There has been significant contributions by vari-
ous researchers to address the issue of conservation and
preservation, within the context of temporal accuracy.
See for example, Maman and Farhat [19], Cebral and
Lohner [20], Farhat et al. [21], Slone et al [22], and Mich-
ler et al. [23]. The key conclusion is that exact conser-
vation and preservation can be ensured in the limit of
mesh refinement only when interpolations of all the vari-
ables are performed using schemes consistent with their
domain. For example, p and o can be interpolated only
in the fluid domain and then transferred. Similarly, de-
formations can be interpolated only in the structural do-
main and then transferred.

Neither of these methods have been applied to rotor-
craft CFD/CSD so far. In the current applications, the
rotor blade is excited by force and moment distributions
(per span) along its local sectional elastic axis. The force
and moment excitations are obtained by integrating the
fluid stresses along chord-wise strips. Chord-wise strips
are an easy and natural choice for structured grids. The
excitations, if calculated at the structural Gauss points
along the elastic axis (using interpolation in the fluid do-
main), or imposed as concentrated forces, one for each
strip using the shape functions, would satisfy conserva-
tion and preservation requirements in the limit of mesh
refinement.

The exact generic methods provide significant ad-
vantages over the current methods of sectional airloads.
First, the method of sectional airloads is arbitrary for
advanced geometry blades, a simple example of which is
the BERP tip. For such geometries it is necessary to



Figure 3: FEM model (MSC NASTRAN) of a SH-
60 Sea Hawk fuselage developed by Sikorsky and
used in UMARC rotor-fuselage coupled dynamic
analysis; Yang et al. 2004

Figure 4: FEM model of a F-16 fighter used in a
doublet-lattice aerodynamic model based typical
fixed-wing flutter analysis; Denegri 2005

use the exact generic methods for high-fidelity coupling.
Second, the generic methods are equally applicable for
both structured and unstructured grids, the latter being
increasingly applied today for near-blade flows. Third,
the methods are well-suited for the long term CFD goal
of near blade adaptive refinement. Fourth, the generic
methods are equally applicable for the rotor, fuselage,
and any structure in general, as long as the interface ge-
ometry representation is clearly defined.

Interface geometry representation

The issue of interface geometry representation in-
volves the rigorous description of the surface based on the
underlying structural model. The method of description
differs based on: (1) whether the structural shape func-

Figure 5: Detailed FEM model of a F-16 fighter
with 0.17 M DOFs for RANS CFD/CSD based
aeroelastic response prediction; Farhat et al.
2003

tions are available, and (2) even if the shape functions are
available whether the structural model reaches out to the
wetted surface. The problem posed by the unavailabil-
ity of shape functions is a practical complication that is
ideally avoided. The problem posed by the structure not
reaching out to the wetted surface is more fundamen-
tal. For a single component structure, e.g. a rotor blade
beam model, the necessary interpolation and extrapola-
tions are rigorously defined by the underlying theory (e.g.
note the term D in eqn 7 in addition to H). Complica-
tions arise for multiple intersecting sub-structures, as is
the case for airframes.

For illustration, figures 3 and 4 show state-of-the-
art dynamic models of rotary and fixed wing airframes.
The details of the work are given later, in the respec-
tive survey sections. The emphasis in dynamic models
is on the key load bearing components and internal load
paths. The emphasis in fluid-structure coupling is on the
external shell. For such purposes models which include
the outer shell, and in addition, the internal load paths,
are most appropriate. For example, Fig. 5, shows a more
detailed model of the same F-16, including the outer shell
(details of the work is cited later).

Detailed modeling of the fuselage for fluid-structure
interaction has not been a key focus so far in rotorcraft
for the following reason. The dominant dynamics of a
helicopter fuselage, unlike fixed-wing, is vibration, which
occurs at high frequencies (usually pNy/rev). The domi-
nant source of this vibration is not the fuselage flow field,
but the shaft transmitted forcing from the rotor. The
forcing from the rotor primarily stems from the rotor
flow field, the interactional effect of the fuselage on the
rotor flow field occurs, nominally, at lower frequencies
(1/rev).

There are important conditions where the above ar-
gument is invalid. First, at low speed flight (around
@ = 0.15) direct impingement of the rotor tip vortices
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Figure 6: Measured and NASTRAN calculated
fuselage natural frequencies of the AH-1G heli-
copter; Yeo and Chopra 2002

on the tail boom is a key mechanism of vibration (at
Np/rev). RANS was unable to resolve this flow field thus
far, but is beginning to do so now. Second, for advanced
configurations with low shaft clearance (for low drag) di-
rect wake impingement is a significant source of vibration
for a wide range of flight speeds. There has been limited
resolution of the interactional flow field around the fuse-
lage thus far. RANS based CFD, and alternative wake
CFD models like the Vorticity Transport Model [24, 25],
are beginning to do so. The emergence of interactional
CFD opens opportunity to calculate vibration and buffet
loads in response to the interactional flow field.
Reproducing the structural frequencies of the fuse-
lage (need at least up to 30 Hz) is in itself difficult in
helicopters (more than 20% error without detail model-
ing). Difficult components lie in critical load paths (main
rotor hub/pylon/transmission case). Dynamicists often

(a) 1-D line fuselage

(b) 3-D detailed fuselage

Figure 7: FEM line and 3-D fuselage NAS-
TRAN models of the AH-1G helicopter from the
DAMYVIBS program used for rotor-fuselage cou-
pled dynamic analysis; Yeo and Chopra 2002

use line fuselages to re-produce measured frequencies.
For example, the calculated frequencies of an AH-1G
(two-bladed, teetering) fuselage for two different types
of models are compared with measurements in Fig. 6.
The corresponding models are shown in Fig. 7. The sim-
pler model is designed to generate similar frequencies as
the more detailed model, and is often preferred. The
fluid-structure coupling methodology, however, is more
involved for the simpler model compared to the detailed
model. The need for extrapolation, a key source of error,
is minimized in the case of detailed models that include
the external shell structure. Models with both internal
and external details of the structure are used regularly by
crash researchers, for very short-time high impact tran-
sients (less than 0.1 sec). An example of a crash test
simulation is shown in Fig. 8, taken from Ref. [26].
Constructing a generalized modular interface which



(a) Detailed shell fuselage
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Figure 8: Detailed FEM composite fuselage (MSC
Dytran) as used in high-fidelity crash models;

Fasanella et al. 2007 (courtesy Karen Jackson,
NASA Langley)

is adaptable to alternative levels of underlying struc-
tural fidelity requires innovative interpolation and ex-
trapolation methods for interface displacement mapping.
A large volume of literature has been devoted to such
methods for fluid-structure coupling. Broadly, they are
divided into two categories. First, the surface tracking
methods. These rely on the underlying shape functions
while trying to mitigate the complexities associated with
multi-component sub-structures. Second, the surface fit-
ting methods. These are focused more on independent
(from fluid and structural solvers) formulations without
the need for shape functions. In fixed wing applications,
the current practice is to use a combination of these in-
terpolation methods to map deformations from CSD to

CFD. Mapping airloads from CFD to CSD then simply
amounts to the correct evaluation of virtual work based
on the deformation mapping (compare eqn. 8 with eqns. 7
and 12).

A displacement mapping must: (1) recover large de-
flections and rotations of the underlying structure from
the surface displacement, and (2) ensure displacement as-
sociation with time, i.e. attachment points must remain
attached throughout the simulation. Arbitrary proce-
dures like a nearest neighbor mapping, although simple
and fast, do not meet these requirements. Moreover, it
prevents the correct evaluation of the virtual work term.
Procedures which rely on underlying structural shape
functions for multi-component blending and extrapola-
tion meet these requirements. They are called surface
tracking methods as mentioned earlier. When the shape
functions are not available, the most general procedure
is to use radial basis functions. These are also called
surface fitting methods. The well-known surface fit-
ting methods include the Multiquadric-Biharmonic (MQ)
method, the method of surface splines commonly called
the Infinite Plate Spline (IPS), the method of Thin
Plate Spline (TPS), and Non-Uniform Rational B-Spline
(NURBS). These methods have been systematically stud-
ied by Hounjet and Meijer [27] in 1994, and Smith et
al. [28] in 2000 (see references therein for details of the
above methods). The study by Smith et al. found TPS
to be most suitable for interpolation and extrapolation
of generalized structural geometries. These radial ba-
sis functions are defined on the whole domain of a sub-
structure. Complications arise for multiple intersecting
sub-structures in 3-D space.

Fitting methods applicable in 3-D, which do not use
radial basis functions, have also been implemented, no-
table among which are the Constant Volume Tetrahe-
dral (CVT) method by Goura et al. [29, 30], and the
Inverse Boundary Element (IBE) method by Chen and
Jadic [31]. Even though applicable in 3-D, these methods
are less suitable for large deformation nonlinear prob-
lems. The first method provides a nonlinear mapping.
Linearization destroys the exactness of rigid body rota-
tions. The second method requires iterations to conform
to the deformed geometry, unless the deformations are
assumed to lie within the range of linear elasticity.

An emerging technique is the use of 3-D radial basis
functions with compact support. These are defined lo-
cally, and hence are easily applicable for surfaces with
high 3-D curvature. The method is based on multi-
variate scattered data interpolation. Originally proposed
by Wu [32] and Wendland [33], and subsequently applied
by Beckert and Wendland [34] for fluid-structure inter-
action problems, the method has found increasing appli-
cation in recent large-scale fixed-wing CFD/CSD calcu-
lations [35, 36].



FIXED WING AIRCRAFT

A comprehensive survey of the state-of-the-art in
fixed-wing aeroelasticity can be found in Livne [37] in
2003. Schuster et al. [38], in the same year, have reviewed
the state-of-the-art in computational aeroelasticity. The
term was used broadly, covering unsteady aerodynam-
ics to CFD and beam models to detailed FEM. In 2004,
Kamakoti and Shyy [39] described the RANS/FEM cou-
pling procedures used for fixed wing applications. The
AGARD 445.6 wing as taken as the baseline configura-
tion for illustration. More recent developments in com-
putational aeroelasticity are highlighted by Bartels and
Sayma [40] in 2007. In the same year, a report detailing
European research towards the development, evaluation,
and transition of high-fidelity aeroelastic tools for full
aircraft has also been published [41].

The following sections review the status of compu-
tational aeroelasticity in fixed wing applications. The
first section briefly describes the status of detailed CSD.
The second section summarizes the important aeroelas-
tic phenomena and the status of high-fidelity CFD/CSD
methods in predicting them.

Structural Modeling

First, the meaning of ‘detailed structures’ must be
clarified. Shown in Fig. 9 is a typical Boeing 737 wing sec-
tion with a simple main/aft double flap system with a sin-
gle slotted thrust gate, in its retracted position [42]. Only
the trailing-edge is shown, the three position Kruger slats
in the leading edge are not shown. Typical structures
such as this, incorporate kinematic constraints to rigid
body modes to flexible deformations. For aeroelastic and
aeroservoelastic studies, a distinction is made between
global and local behavior of structures. Only the global
model is coupled to the external flow. The loads gen-
erated by the global model are then transferred to the
internal structures wherever needed, locally.

The local models handle details, which include FEM
of individual composite ply-layups, rigid body mecha-
nisms, redundant load paths, local buckling, crack prop-
agation, stress concentration due to manufacturing im-
perfections, embedded cooling, and integrated smart ma-
terials and actuators. Local effects (e.g. actuator loads,
local buckling, composite tailoring) are included via lower
order models. The advent of HPC opens opportunity to
couple the important frequencies of local analysis directly
to global analysis using detailed modeling. Performed ju-
diciously, based on a fundamental understanding of the
key phenomena, it can lead to enormous payoffs in design
innovation and cost.

A comprehensive treatise on fixed-wing structural
analysis and design, as performed in the Boeing Com-
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Figure 9: The outboard wing cross section of a
Boeing 737-NG aircraft; van Dam 2002

*Half model shown
¢ Total airplane model

* 35 meshes (substructures)

* 60,000 nodes

+ 150,000 elements

« 225,000 degrees of freedom

Figure 10: A Boeing 777 FEM stress model with
details of major internal components; Mohaghegh
2005

pany can be found in Mohaghegh [43]. The philosophy
of fail safe design has led to the well-known practice of
discretely stiffened wing and fuselage panels and mul-
tiply redundant two and three-piece primary bulkheads
in the construction of modern aircraft structures. To-
day, global analysis can be performed using full aircraft
FEM and RANS. The structural model involves large-
scale but usually linear FEM models. The global loads
are then used for internal stress calculations using de-
tailed FEM of the type shown in Fig. 10. Most often,
this step involves a static analysis. Since the 1990s, all
primary structures of commercial airplanes like the B777
and A340 are certified using such FEM analysis. A typ-
ical example is the wing-body junction which includes
the cargo bay and landing gear — a region of complex
redundant load paths and structural discontinuities, see
Fig. 11. The need for analysing such structures led to the
original development of sub-structuring methods. Com-
posites materials are used on selected components like
the radomes, fairings, all control surface panels, engine
nacelles, and torque boxes. The main purpose is to pro-
vide higher impact, fatigue, and corrosion resistance.
Almost every modern rotor blade is an all compos-
ite construction (although the main spar is frequently
of Titanium construction). The internal layout of rotor



Wing-body
interaction analysis

(5
Landing gear beam —
Pressure deck -

Torque box —. e =

Substructure Nodes Elements Equations
A 1,000 2,897 1,003
B 1,014 2728 1017
c 1,060 3,546 ~6,000
D 894 2526 ~5,000

Figure 11: A routine Boeing 747 wing-body interaction FEM stress analysis model with typical sub-

structures; Mohaghegh 2005

blades, however, are much simpler compared to the me-
chanical complexity of fixed wing sections. The control
mechanism for conventional main rotors are all essen-
tially concentrated at the root end. In the case of rotors,
the state-of-the-art in global and local models are 1D
beam FEM and 3D stress analysis respectively. The 1D
beam properties are first obtained by a separation of the
3D problem into a 1D problem and a 2D cross-sectional
analysis problem (see section on rotary wing). Analogous
to its aerodynamic lifting-line counterpart, the theory is
not meant for end stresses or stress concentrations at
the attachment point. More importantly, the root end
flex-beams and torque tube structures of modern hin-
geless and bearingless rotors require that the external
loads be transferred correctly to internal stresses. This
is currently performed by a detailed re-calculation using
commercial FEM codes like ABAQUS, ANSYS, etc, in a
static fashion (using the dynamic forcing obtained from
the global model). It is desirable that future HPC based
simulations make this approximate re-calculation redun-
dant.

While the 1-D beam FEM model of a rotor blade
is comparatively simpler, the models include geometric
nonlinearities rigorously that are critical for rotors. Ro-
tary wing aeroelasticity is inherently nonlinear, the non-
linearities stem from the centrifugal and Coriolis forces
due to blade rotation. The Coriolis nonlinearity is in turn
coupled with the rotor trim state. This level of coupling
between CSD and vehicle dynamics is absent in fixed
wings, and this has its implications on the efficiency of
methods that couple rotorcraft CSD with CFD.

Aeroelastic Phenomena and CFD/CSD Predic-

tions
Flutter

Flutter analysis in subsonic regimes are satisfacto-
rily performed by standard k and p — k methods using
doublet-lattice type linear aerodynamic models. These
options are available today as part of FEM codes like
NASTRAN and ASTROS. In supersonic regimes, meth-
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ods related to piston theory are used. A description of the
current status of these methods, along with their aeroe-
lastic applications, can be found in Yurkovich [44]. High-
performance fighter aircrafts are, however, flutter critical
in the transonic regime where unsteady shock motions
of three different types determine the nature of energy
transfer between the fluid and the structure. A linear
structure is still enough, only the aerodynamic nonlin-
earities need to be predicted. Hence high-fidelity RANS
CFD approaches are sought.

Unlike helicopter blades, where flap-lag flutter of
hingeless rotors is determined by structural nonlineari-
ties coupled to the vehicle operating state, fixed wing
bending-torsion flutter is a linear phenomena. The effect
of vehicle g-level is only via the effect of trim angle of at-
tack on the shock motion. At a given angle of attack, and
dynamic pressure, a conceptually straight-forward fluid-
structure transient response can be used to extract the
frequency and damping. Because classical logarithmic
decay methods are sensitive to noise, refined eigensys-
tem realization algorithms are used to extract these pa-
rameters for the particular modes of interest. Most often
(except for free-body control surface flutter) these are the
first few antisymmetric modes of the aircraft. Depend-
ing on the convergence and divergence of response, gen-
erally 5 to 6 transient calculations are enough to bracket
a flutter point (i.e. a frequency, damping vs. dynamic
pressure point corresponding to zero damping at a given
Mach number).

One of the early CFD based flutter calculation for
a complete aircraft was performed by Melville in 2001
and 2002 using Euler [45] and RANS [46] coupling, for a
F-16 fighter aircraft. The linear FEM structural model
used was the same as used by Denegri earlier [47] for a
doublet-lattice based flutter analysis. Ten symmetric and
ten anti-symmetric mode shapes were considered. An ex-
tra mode was incorporated for the leading edge flap. The
flap was represented as a damped first-order system that
relaxed into a commanded position. The FEM model
is shown in Fig. 12(a). It was built from several sim-
pler models representing each of the main components
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(c) Measured and predicted flutter boundary

Measured and predicted flutter onset boundaries for a F-16 fighter aircraft using

RANS/FEM modal coupling; Angle of attack a=1.5°; Melville 2001, 2002
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Figure 13: Predicted and measured aeroelastic parameters for a F-16 fighter aircraft at 3000 m altitude

using RANS/full FEM coupling; Farhat et al. 2003

— the fuselage, wings, leading-edge flap, flaperon, tip
launcher, and tails. The fluid-structure interface repre-
sentation was constructed by seperate extrapolation of
each component. The interface is shown in Fig. 12(b).
The curvature was provided by the underlying structural
components, extrapolation to surface was done linearly.
The RANS domain (Baldwin-Lomax) contained 20 to 36
overset grids with 1.9M to 3.5M points. The details of
the inlet, exhaust, ventral fins and under-wing store were
not included. The coupling method and the moving grid
mechanism (with its associated Geometric Conservation

12

Law) was based on an earlier work by Morton et al. [48].
A single CPU was used for structures and grid deforma-
tion, the fluids solver was run in parallel.

A perturbation response damped the three primary
symmetric modes into steady deflections. The three
primary anti-symmetric modes were lowly damped and
showed zero mean oscillations. The conventional proce-
dure for extracting modal damping is to use classical log-
arithmic decay methods. For a full FEM model, real-time
parameter identification methods, as used in flight tests,
are used. The procedure is recognized as a challenge in



(a) A Boeing twin-engine transport wind-tunnel model
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Figure 14: Predicted and measured flutter onset for a twin-engine Boeing transport aircraft model
using RANS/FEM modal coupling; Hong et al. 2003, reproduced from Bartels and Sayma 2007

general. Often, a doublet-lattice based linear analysis
is performed a priori to identify the critical modes. In
this particular instance for example, linear analysis re-
sults from Denegri [47] was used to identify the second
mode as the critical mode. This mode was then tracked
during the CFD/CSD simulation. Figure 12(c) compares
the predicted flutter boundary with flight test data.
Farhat and his co-researchers [49, 50] have per-
formed RANS /full FEM simulations of the same aircraf